Министерство здравоохранения Республики Беларусь
Учреждение образования
«Гомельский государственный медицинский университет»
Кафедра биологической химии
Обсуждено на заседании кафедры биологической химии
Протокол № __________
МЕТОДИЧЕСКАЯ РАЗРАБОТКА
Для проведения занятия со студентами
2 курса ФПСЗС
по
биологической
химии
(наименование дисциплины)
Тема: Белки 5. Биосинтез белка. Регуляция биосинтеза. Патология белкового обмена.
Время 3ч.
1. УЧЕБНЫЕ И ВОСПИТАТЕЛЬНЫЕ ЦЕЛИ, МОТИВАЦИЯ ДЛЯ УСВОЕНИЯ ТЕМЫ; ТРЕБОВАНИЕ К ИСХОДНОМУ УРОВНЮ ЗНАНИЙ.
Цель занятия: сформировать представления об этапах биосинтеза белка, механизмах его регуляции и молекулярных аспектах основных нарушений азотистого обмена. Освоить рефрактометрический метод определения концентрации белка в сыворотке крови.
В результате проведения занятия студент должен:
1) Знать принципиальную схему, этапы, молекулярный механизм и регуляцию процесса биосинтеза белка; биохимические основы и последствия нарушений белкового обмена.
2) Научиться проводить исследование на рефрактометре.
2. КОНТРОЛЬНЫЕ ВОПРОСЫ ИЗ СМЕЖНЫХ ДИСЦИПЛИН.
2.1. Строение, классификация и свойства основных классов нуклеиновых кислот (биоорганическая химия).
2.2. Строение рибосом (медицинская биология).
2.3. Структура и функции иммуноглобулинов (микробиология).
3.КОНТРОЛЬНЫЕ ВОПРОСЫ ПО ТЕМЕ ЗАНЯТИЯ.
1. Принципиальное отличие биосинтеза белка от биосинтеза других молекул. Общая схема биосинтеза белка - необходимые предпосылки:
1.1. информационный поток - схема передачи информации (центральная догма молекулярной биологии). Репликация и транскрипция ДНК - ферменты, механизм. Обратная транскрипция, роль ревертаз. Процессинг и сплайсинг иРНК. Характеристика генетического кода, кодон, антикодон.
Отличие биосинтеза белка от биосинтеза других молекул:
Нет соответствия между числом мономеров матрицы и в продукте реакции (4 нуклеотида--20 аминокислот)
Между мРНК (матрица) и пептидной цепью белка (продукт) нет комплементарности.
Общая схема биосинтеза белка - необходимые предпосылки:
информационный поток (передача информации от ДНК на РНК и на белок)
пластический поток (аминокислоты, мРНК, тРНК, ферменты)
энергетический поток (макроэрги АТФ, ГТФ, УТФ, ЦТФ)
Схема передачи информации (центральная догма молекулярной биологии).
Поток генетической информации идет в следующем направлении:
Первый шаг, копирование информации с ДНК на РНК, назван транскрипцией, что ассоциируется с работой средневековых монахов, проводивших свою жизнь в кельях за копированием символ за символом, старых латинских рукописей.
Второй шаг, при котором аминокислоты полимеризуются согласно информации, записанной в РНК, назван трансляцией. Продолжая аналогию с жизнью монахов, этот процесс напоминает работу других монахов (уже много столетий спустя), которые, пользуясь переписанными прежде рукописями, находят эквиваленты старых латинских слов на других языках (например, белорусском или английском) и создают новые рукописи, написанные на отличающемся от исходного языке, в данном случае на языке аминокислотной последовательности.
Ретровирусы внесли изменения в центральную догму молекулярной биологии: особой формой репликации у прокариот является репликация с использованием РНК в качестве матрицы для синтеза ДНК (такая форма репликация обнаружена у HIV ретровируса, вызывающего СПИД) и катализируется ферментом РНК зависимой ДНК полимеразой или обратной транскриптазой (ревертазой).
Процессинг и сплайсинг иРНК.
См в теме белки-4, вопрос 11.
Характеристика генетического кода, кодон, антикодон.
Генети́ческий код - это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
Таблица генетического кода |
|||||
1 |
2 |
3 |
|||
У |
Ц |
А |
Г |
||
У
|
Фен |
Сер |
Тир |
Цис |
У |
Фен |
Сер |
Тир |
Цис |
Ц |
|
Лей |
Сер |
Терм |
Терм |
А |
|
Лей |
Сер |
Терм |
Три |
Г |
|
Ц |
Лей |
Про |
Гис |
Арг |
У |
Лей |
Про |
Гис |
Арг |
Ц |
|
Лей |
Про |
Глн |
Арг |
А |
|
Лей |
Про |
Глн |
Арг |
Г |
|
А |
Иле |
Тре |
Асн |
Сер |
У |
Иле |
Тре |
Асн |
Сер |
Ц |
|
Иле |
Тре |
Лиз |
Арг |
А |
|
Мет |
Тре |
Лиз |
Арг |
Г |
|
Г |
Вал |
Ала |
Асп |
Гли |
У |
Вал |
Ала |
Асп |
Гли |
Ц |
|
Вал |
Ала |
Глю |
Гли |
А |
|
Вал |
Ала |
Глю |
Гли |
Г |
Свойства генетического кода:
Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.
Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов.
Однозначность — определённый кодон соответствует только одной аминокислоте.
Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.
Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека.
Антикодон – триплет, занимающий определенное и постоянное положение в структуре тРНК, комплементарно взаимодействует с кодоном иРНК.
1.2. пластический поток - механизм активации аминокислот, строение тРНК, характеристика АРС-аз - кодаз.
Этап активирования аминокислот:
Процесс трансляции начинается с активирования аминокислот, в котором участвуют тРНК, аминокислоты и специфические ферменты аминоацил-т-РНК синтетазы (АРСазы).
На первом этапе аминокислота взаимодействует с АТФ, образуя промежуточное соединение аминоацил-аденилат. АТФ распадается при этом с образованием пирофосфата, гидролиз которого делает этот этап необратимым. На втором этапе аминокислота в активном центре АРСазы переносится на тРНК с образованием связи между СООН группой аминокислоты и 2’или 3’ ОН группами рибозы концевого аденилового нуклеотида акцепторного участка тРНК. Узнавание соответствующей тРНК связано с особенностями нуклеотидного состава всей молекулы тРНК (не только структуры антикодона).
1.3. энергетический поток. Роль макроэргов АТФ, ГТФ и др. в биосинтезе белка.
Роль АТФ:
Используется в стадии активации аминокислот
Аминокислота+АТФ+тРНК+Н2О = аминоацил-тРНК+АМФ+ФФн
используется для раскручивания вторичной структуры иРНК в процессе трансляции;
Роль ГТФ:
смыкание субъединиц рибосом (в стадии инициации)
присоединение аминоацил тРНК к аминоацильному центру рибосомы (в стадии элонгации)
механизм транслокации, т.е. перемещения рибосомы на три нуклеотида вдоль иРНК (в стадии элонгации)
??? размыкание субъединиц рибосомы (в стадии терминации)
Рибосомы - принципы организации, строение, состав. Механизм трансляции - этапы рибосомального цикла:
2.1. инициация, факторы инициации. Образование инициаторного комплекса.
2.2. элонгация, факторы элонгации.
2.3. терминация.
Рибосомы - принципы организации, строение, состав.
Рибосомы, внутриклеточные частицы, осуществляющие биосинтез белка, состоят из двух различных субчастиц, каждая из которых построена из рибосомной РНК [рРНК (rRNA)] и многих белков. Рибосомы и их субчастицы обычно классифицируют не по массам, а в соответствии с коэффициентами седиментации. Коэффициент седиментации полной эукариотической рибосомы составляет около 80 единиц Сведберга (80S), а коэффициент седиментации ее субчастиц составляет 40S и 60S.
Меньшая 40S-субчастица состоит из одной молекулы 18S-рРНК и 30-40 белковых молекул. Большая 60S-субчастица содержит три типа рРНК с коэффициентами седиментации 5S, 5,8S и 28S и 40-50 белков. В присутствии мРНК (mRNA) субчастицы объединяются с образованием полной рибосомы, молекула мРНК проходит через щель на малой субчастице, причем эта щель ориентирована как раз в промежуток между двумя субчастицами. тРНК также связываются вблизи этого участка.
Рибосомы прокариот имеют аналогичную структуру, но они несколько мельче, чем эукариотические (коэффициенты седиментации полной рибосомы 70S, а субчастиц — 30S и 50S).
В процессе функционирования (т. е. синтеза белка) рибосома осуществляет несколько функций:
1) специфическое связывание и удержание компонентов белоксинтезирующей системы [информационная, или матричная, РНК (иРНК); аминоацил-тРНК; пептидил-тРНК; гуанозинтрифосфат (ГТФ); белковые факторы трансляции еEF;
2) каталитические функции (образование пептидной связи, гидролиз ГТФ):
3) функции механического перемещения субстратов (иРНК, тРНК), или транслокации. Функции связывания (удержания) компонентов и катализа распределены между двумя рибосомными субчастицами:
малая рибосомная субъединица:
связывая мРНК, служит первичным акцептором генетической информации для белоксинтезирующего аппарата;
с участием факторов инициации обеспечивает узнавание инициирующего участка на иРНК путем сканирования цепи мРНК [у эукариот];
обеспечивает кодон-антикодоновое взаимодействие инициирующего кодона иРНК с антикодоном инициирующей тРНК;
Малая рибосомная субъединица таким образом, является главным " действующим лицом " всего сценария инициации и, по-видимому, не несёт каталитических функций.
большая субчастица исполняет биохимическую часть функций: содержит каталитический участок для синтеза пептидной связи, а также центр, участвующий в гидролизе ГТФ; кроме того, в процессе биосинтеза белка она удерживает на себе растущую цепь белка в виде пептидил-тРНК.
Рибосома имеет 2 центра связывания: Р-центр (пептидильный) и А-центр (аминоацильный)
Механизм трансляции - этапы рибосомального цикла:
Собственно трансляция проходит в три этапа: инициация, элонгация и терминация.
Инициация: (на рисунке шаг 2) молекула иРНК поступает на малую рибосомную субъединицу, рибосома точно присоединяется к модифицированному (кэп) 5’-концу иРНК и перемещается по ней до тех пор, пока не обнаружит инициирующий кодон, к инициирующему кодону (АУГ) присоединяется первая аминоацил-тРНК (метионил-тРНК), и комплекс «закрывается» большой субъединицей рибосомы. В образовании инициирующего комплекса участвуют белковые факторы инициации (еIF-1,2,3) [Initiation Factors] и используется энергия ГТФ.
Элонгация: (на рисунке шаг 3) в аминоацильный участок поступает следующая аминоацил-тРНК. Фермент пептидилтрансфераза образует пептидную связь между активированной карбоксильной группой первой аминокислоты и аминогруппой второй аминокислоты. Образованный при этом дипептид «зависает» в аминоацильном центре. Затем с помощью транслоказы и энергии ГТФ рибосома перемещается по иРНК на один кодон, аминоацильный участок освобождается, туда поступает новая аминокислота. В стадии элонгации принимают участие белковые факторы элонгации (еEF). Таким образом, при элонгации рибосома работает как лентопротяжный механизм, перемещая с помощью тРНК цепь мРНК относительно себя с шагом по три нуклеотида от 5'- к 3'-концу цепи.
Терминация (на рисунке шаг 4) наступает тогда, когда в аминоацильном участке оказывается один из терминирующих кодонов УАА, УГА, УАГ. К таким кодонам присоединяются специальные белки факторы терминации (рилизинг-факторы, release factors) еRF, которые высвобождают синтезированный пептид и вызывают диссоциацию субъединиц рибосомы.
На рисунке шаг 4 - посттрансляционная модификация белка: формирование пространственной структуры и процессинг белковой молекулы с целенаправленным перемещением молекул к местам их функционирования.
Некоторые факторы трансляции эукариот |
|
Факторы эукариот |
Функции |
Инициация |
|
еIF1 |
Участвуют в образовании инициирующего комплекса |
eIF2 |
|
eIF3, eIF4C |
|
eIF4E |
Участвует в связывании кэпа иРНК |
eIF4A, eIF4B,eIF4F |
Участвуют в поиске первого кодона АУГ |
eIF5 |
Способствуют диссоциации eIF2, eIF3, eIF4C |
eIF6 |
Способствует диссоциации 60S субъединиц |
Элонгация |
|
eEF1a |
Доставляет аминоацил тРНК к рибосоме |
eEF1bg |
Участвует в рециклизации eEF1a |
eEF2 |
Фактор транслокации |
Терминация |
|
eRF |
Завершает синтез полипептидной цепи |
3. Виды и механизмы посттрансляционной модификации (процессинга) пробелков:
3.1. химическая модификация (виды, примеры);
3.2. ограниченный протеолиз;
3.3. самосборка белка.
Многие белки синтезируются в неактивном виде (в виде предшественников) и после схождения с рибосом подвергаются постсинтетической модификации. Виды модификации белков:
частичный (ограниченный) протеолиз (удаление N-концевого метионина и сигнального пептида, образование активных форм ферментов и гормонов, смотри ниже в вопросе 3.2)
ацетилирование: в большинстве случаев инициирующий метионин удаляется путем гидролиза, и к новой N – концевой аминокислоте добавляется ацетильная группа. Ацетил-КoA – донор ацетильной группы для этих реакций. Ацетилированию подвергаются гистоновые белки.
метилирование происходит по остаткам лизина в некоторых белках типа калмодулина и цитохрома c. S-аденозилметионин - донор активной метильной группы
фосфорилирование - одна из наиболее популярных модификаций белков, которые происходят в животных клетках. Реакции фосфорилирования белков составляют часть механизмов регуляции биологической активности белка и являются обратимыми. Реакции фосфорилирования (АТФ + белок фосфопротеин +АДФ) катализируются протеинкиназами, а реакции отщепления остатков фосфата (фосфопротеин протеин + фосфат) протеинфосфатазами. Примером такого рода реакций могут быть реакции фосфорилирования гликоген синтазы и гликоген фосфорилазы в гепатоцитах в ответ на действие глюкагона – гормона поджелудочной железы. Фосфорилирование синтазы ингибирует ее активность, в то время как активность фосфорилазы повышается. Эти два синхронные события ведут к повышению поступления печеночной глюкозы в кровь. Наоборот, дефосфорилирование вызывает обратное соотношение активностей и клетки печени активно синтезируют гликоген.
остатки тирозина в некоторых белках могут сульфатироваться. Примерами таких белков могут быть фибриноген или гастрин. Донором сульфата для белков, как и при сульфатировании других молекул является 3 '-фосфоаденозил-5 '-фосфосульфат (ФАФС). Присоединение сульфата к остаткам тирозина необходимо для проявления функции белков и является необратимым процессом в отличие от фосфорилирования тирозина, используемого в регуляторных механизмах клетки.
Пренилирование - присоединение 15 углеродной фарнезильной или 20 углеродной геранилгеранильной групп к акцепторным белкам. Фарнезил и геранилгеранил - изопреноиды, получаемые на пути синтеза холестерина. Изопреноидные группы присоединяются к остаткам цистеина на С конце белков тиоэфирной связью (C-S-C). Последовательность на C - конце белков, подвергающихся пренилированию: CAAX, где C – цистеин, А – любая алифатическая аминокислота (кроме аланина) и X - C-концевая аминокислота. Для проведения реакции присоединения пренильных групп, три С- концевые аминокислоты молекулы предшественника (AAX) удаляются, а цистеин активируется метилированием при участии S-аденозилметионина как донора метильной группы. Примерами пренлированных белков могут служить белки, связывающие и гидролизуюшие ГТФ. Многочисленные G-белки участвующие в передаче сигналов имеют гамма субъединицу, модифицированную геранил-геранилом.
Модификации белков, которые зависят от витамина C как кофактора, включают гидроксилирование пролина и лизина. Гидроксилирующие ферменты - пролилгидроксилазы и лизилгидроксилазы. (см. тему «Белки-2» вопрос 1.1.)
Витамин К – кофактор в карбоксилировании остатков ГЛУ. Результатом этой реакции является -карбоксиглутаминовая кислота.
Это соединение важно для функции ряда белков, участвующих в свертывании крови. Образование глутамата позволяет белкам формировать комплексы с ионами кальция и таким образом способствовать изменению конформации и биологической активности белков. Антикоагулянты производные кумарина, варфарин и дикумарин, ингибируют реакцию
Ограниченный протеолиз;
Самосборка белка.
Через какое-то время после начала трансляции N-концевая часть растущего полипептида оказывается вне рибосомы и затем по мере роста полипептида все большая часть его свешивается с рибосомы в окружающую среду. В ней полипептидная цепь не может оставаться в виде развернутой цепи: ее гидрофобные боковые группы взаимодействуют друг с другом, а гидрофильные - с окружающей водой и ионами. Это создает условия для сворачивания, компактизации и самоорганизации внерибосомной части растущего полипептида в пространственную (вторичную и третичную) структуру.
Такое постепенное полярное сворачивание растущей полипептидной цепи на рибосоме обозначается как котрансляционное формирование структуры белка. В других случаях белок, синтезируемый рибосомой и используемый в других компартментах клетки необходимо перенести через мембрану либо вне клетки, либо в одну из внутриклеточных органелл. Транспорт такого белка через мембрану требует несвернутого состояния его полипептидной цепи. В этом случае могут быть использованы две альтернативные возможности:
1) рибосомы, синтезирующие белок, предназначенный для транспорта через мембрану, сами сидят на мембране (мембраносвязанные рибосомы), и растущий полипептид в развернутом виде поступает из них непосредственно в мембрану;
2) свободные (не прикрепленные к мембране) рибосомы цитоплазмы синтезируют полипептидную цепь, которая по мере выхода из рибосомы взаимодействует со специальными белками - молекулярными шаперонами. Шапероны препятствуют полному сворачиванию белка в компактную структуру и поддерживают его недосвернутое состояние в растворе. После освобождения из рибосомы эти недосвернутые белки взаимодействуют с мембраной и транспортируются через нее.
Регуляция биосинтеза белка у прокариот. Особенности регуляции биосинтеза белка у эукариот:
4.1. избирательная транскрипция.
4.2. альтернативный сплайсинг иРНК.
4.3. модификация гистоновых и негистоновых белков.
Регуляция биосинтеза белка у прокариот.
Значительная часть белков одинакова для всех типов клеток. Они обеспечивают основные функции клеток (ферменты гликолиза, цикла Кребса, структурные белки). Скорость их образования и содержание в клетке обычно меняется незначительно. Такие белки получили название конститутивных белков. Существуют белки, потребность в которых возникает только в специальных условиях. Такие белки обычно синтезируются с очень низкой скоростью, но синтез их может быть значительно ускорен. Например, при голодании или усиленных физических упражнениях клетки печени начинают активно превращать аминокислоты в глюкозу. Это становится возможным благодаря усилению синтеза ферментов, катализирующих образование глюкозы из аминокислот. Такие белки получили название индуцируемых белков. Индукция – свойство клеток синтезировать определенные ферменты только при наличии соответствующих субстратов.
Молекулярный механизм индукции ферментов был разработан Жакобом и Моно и известен как гипотеза оперона. У прокариот регуляция инициации транскрипции – основное место действия регуляторов.
Оперон - участок ДНК, кодирующий строение белков, содержит регуляторную зону, контролирующую синтез этих белков. Структурные гены располагаются на молекуле ДНК рядом с последовательностями нуклеотидов, называемых промотором и оператором. Для регуляции транскрипции необходим еще один участок ДНК - регуляторный ген, не всегда располагающийся вблизи вышеописанной группы. Во время транскрипции РНК-полимераза связывается с промотором и продвигается вдоль ДНК, образуя транскрипт генов оперона. Белки-репрессоры - продукты трансляции регуляторных генов, связываются с соответствующими операторными участками и блокируют продвижение РНК-полимеразы, и, следовательно, препятствуют транскрипции.
В самом простом варианте этот механизм можно рассмотреть на примере триптофанового оперона кишечной палочки. Оператор триптофанового оперона представляет собой последовательность нуклеотидов, которую узнает репрессор этого оперона. Присоединение репрессора блокирует присоединение РНК-полимеразы к промотору, предотвращая экспрессию триптофанового оперона. Присоединение репрессора к оператору становится возможным лишь в том случае, если к репрессору присоединятся 2 молекулы триптофана. Результатом данного взаимодействия оператора и репрессора является остановка синтеза. Такое влияние продукта гена регулятора получило название негативного контроля, гены, кодирующие такие регуляторы, названы генами репрессоров, а молекулы, способствующие такой реакции репрессора, получили название корепрессоры (в нашем случае это молекулы триптофана). Роль корепрессоров в клетке часто выполняют конечные продукты метаболических путей.
Особенности регуляции биосинтеза белка у эукариот. Избирательная транскрипция.
У эукариот, регуляция экспрессии генов происходит на разных участках механизма синтеза белков, начиная от синтеза иРНК и до формирования пространственной структуры белков. Можно выделить несколько уровней такой регуляции:
1 Регуляция механизмов траскрипции;
2. Регуляция процессинга иРНК;
3. Регуляция транспорта РНК из ядра в цитозоль;
4.Регуляция трансляции;
5.Регуляция стабильности (продолжительности жизни) иРНК;
Основным объектом регулирующего влияния на синтез белка и нуклеиновых кислот является транскрипция, она регулируется специальными регуляторными белками, которые присоединяются к специфическим последовательностям, как правило, расположенным на больших расстояниях от промотора. Влияние на процесс формирования комплекса инициирующих белков может быть ускоряющим (энхансеры) или замедляющим (сайленсеры).
Важным элементом в механизмах регуляции экспрессии генов на уровне транскрипции является доступность участков ДНК к действию регуляторов транскрипции.
Многие гены, используемые для синтеза белков, собраны в молекулах ДНК в форме кластеров и доступность к такому кластеру может быть в свою очередь регулируема. Предполагается несколько механизмов, позволяющих вызвать изменения хроматина. Включение или выключение отдельных кластеров генов в определенные сроки жизни клетки или организма обеспечивают процессы дифференцировки клеток, адаптации к определенным условиям жизни.
Альтернативный сплайсинг иРНК.
См. тему «Белки-4», вопрос №11
Модификация гистоновых и негистоновых белков.
В ядре отрицательно заряженная ДНК находится в комплексе с положительно заряженными белками гистонами. Чтобы начались матричные синтезы, нужно «снять» гистоны с ДНК. Это достигается путем ведения отрицательно заряженных структур (под действием гормонального сигнала посредством ферментов аденилатциклазы (превращает АТФ в цАМФ) и протеинкиназ (катализирует процесс протеин---фосфопротеин) происходит фосфорилирование негистоновых белков, которые при этом приобретают отрицательный заряд и притягивают к себе положительно заряженные гистоны. В результате чего ДНК обретает способность к транскрипции и дальнейшей трансляции.
5. Строение иммуноглобулинов (Ig). Характеристика основных классов Ig - (IgA, IgD, IgE, IgG, IgM). Регуляция экспрессии генов Ig и причины их разнообразия.
Все молекулы иммуноглобулинов состоят из 2 идентичных легких (L) цепей (молекулярная масса 23000) и 2 идентичных тяжелых (H) цепей (молекулярная масса 53,000-75,000) связанных в форме тетрамера (L2H2) дисульфидными мостиками.
Строение иммуноглобулинов (Ig).
В каждой цепи можно выделить специфические домены, или области, характеризующиеся структурными и функциональными особенностями. Аминокислотная последовательность С-концевого отдела цепи легкой цепи (108-214 аминокислотный остаток) постоянная (константная) –СL-область. N-концевой отдел легких цепей (1-107 –й аминокислотный остаток) вариабельная (меняющаяся ) VL-область цепи. Одна четверть тяжелых (H) цепей (около 120 аминокислот) со стороны N -концевой аминокислоты названа переменной (вариабельной) областью (VH), а остальная часть тяжелой цепи (свыше 300 аминокислот) состоит из нескольких константных областей (CH1, CH2, CH3). N-концевые вариабельные участки легких (VL) и тяжелых(VH) цепей молекулы иммуноглобулина формируют домен молекулы, который связывает специфический антиген – активный центр антитела.
Характеристика основных классов Ig - (IgA, IgD, IgE, IgG, IgM).
Исследования аминокислотного состава СН областей тяжелых цепей у людей позволило выделить пять типов тяжелых цепей обозначенных -, -, - ,- и , имеющих молекулярную массу от 50 000 до 70 000. Тип Н цепей определяет класс иммуноглобулина и его функциональные особенности. Выделяют 5 классов иммуноглобулинов: IgG, IgA, IgM, IgD и IgЕ. Структурные особенности СН областей тяжелых цепей позволяет в каждом классе выделить отдельные подклассы иммуноглобулинов.
Регуляция экспрессии генов Ig и причины их разнообразия.
Каждый человек способен к образованию антител, направленных против возможно более миллиона различных антигенов. Порождение такого огромного разнообразия антител зависит от комбинаций различных структурных генов, способствующих формированию каждой цепочки иммуноглобулина и высокой частоты соматических мутационных событий в перестраиваемых генах VН и VL.
Рассмотрим этот вопрос на примере рекомбинации генов, кодирующих тяжелые цепи. В ДНК лимфоцитов содержаться гены константных областей пяти классов и гены вариабельных областей трех типов: 300-400 разных генов V, около 20 разных генов D и 4 разных гена J. Эти группы генов расположены в разных участках ДНК. В результате транспозиции происходит объединение трех разных генов V, D и J в полный ген вариабельной области цепи Н. При этом выбор каждого гена из группы соответствующих генов происходит случайно: любой ген Vi из сотен генов V может оказаться объединенным с любыми генами Di и Ji из групп соответственно D и J. Далее, также путем транспозиции, полный ген вариабельной области может объединиться с любым из генов константной области, в результате получается полный ген соответствующей Н-цепи. Общее число вариантов полного гена Н-цепи равно примерно 4000. Сходным путем образуются и гены легких цепей; их тоже может быть около 4000 вариантов. При образовании иммуноглобулинов цепи Н и L могут соединяться в разных сочетаниях, поэтому общее число разных иммуноглобулинов достигает порядка 107 (4000*4000=1,6*107).
Поскольку распределение генов при транспозиции имеет случайный характер, в разных лимфоцитах образуются разные сочетания генов V, D, J и С в полном гене иммуноглобулиновой цепи, т.е. происходит дифференциация лимфоцитов и образование клонов, различающихся генотипически. Соответственно, они различаются и фенотипически – по способности синтезировать антитела определенной специфичности.
Регуляция экспрессии генов Ig:
Для многих регуляторных белков биосинтез ограничен клетками строго определенных типов. Например, октамерсвязывающий белок Oct-2 , участвующий в активации экспрессии генов иммуноглобулинов в B-лимфоцитах, обнаруживают только в клетках, синтезирующих иммуноглобулины. Экспрессия рекомбинантного гена, кодирующего Oct-2, в клетках HeLa приводит к активации экспрессии генов иммуноглобулинов на уровне транскрипции. Таким образом, для осуществления тканеспецифической регуляции экспрессии генов в этом примере необходим тканеспецифический синтез белка-активатора транскрипции.
6. Патология белкового обмена. Нарушение переваривания и всасывания, последствия ахилии. Белковое голодание, квашиоркор, их последствия и основные проявления. Биосинтез дефектных белков. Первично - и вторично-дефектные белки. Относительно патологические белки. Поврежденные белки.
Патология белкового обмена.
В организме практически нет депо белков. Источником аминокислот для их синтеза служат компоненты пищи. При нарушении переваривания и всасывания белков развивается алиментарная белковая недостаточность. Нарушения белкового обмена возможны на всех этапах, начиная с всасывания и заканчивая выведением из организма конечных продуктов обмена. Кроме того, при повреждении генетического аппарата изменяется синтез белков или синтезируются белки с измененной структурой.
Нарушение переваривания и всасывания, последствия ахилии.
При заболеваниях пищевода и кишечника (рак пищевода, непроходимость пищевода или кишечника и т.д.) возникает проблема введения белков в организм. Введение белков парэнтерально, т.е. минуя желудочно-кишечный тракт, вызывает сенсибилизацию организма, а при повторном введении может развиться анафилаксия. Для предотвращения указанных реакций принято вводить парэнтерально (минуя ЖКТ) смеси аминокислот, которые не обладают специфичностью и их можно долго применять без значительных осложнений.
Кроме того проблемы с пищеварением белков могут возникнуть на стадии переваривания в желудке из-за уменьшения секреции либо отсутствия секреции соляной кислоты. Ахилия (Achylia) - отсутствие секреции HCl. Данный термин применяется обычно по отношению к желудку, не вырабатывающему желудочный сок - желудочная ахилия (achylia gastrica), вследствие атрофии его слизистой оболочки. Отсутствие HCl может обуславливать процессы бактериального гниения в кишечнике, в результате чего иногда возникает диарея.
Из-за хронического энтерита (хроническое воспалительное заболевание тонкой кишки) развивается гипопротеинемия. Ее наличие объясняется не только нарушением гидролиза белков и всасывания аминокислот кишечной стенкой, но и повышенной экссудацией белков, в основном альбуминов, в просвет кишки при ее воспалительных поражениях.
Белковое голодание, квашиоркор, их последствия и основные проявления.
В настоящее время идентифицировано более 200 различных белков в плазме клеток крови, биологических жидкостей и тканей. Это позволяет понять, почему дефицит белка дает многочисленные дефекты.
Следствием белкового голодания является белковая недостаточность, которая может быть следствием не только дефицита белка, но и ряда заболевания, на фоне достаточного поступления белка с пищей. Белковая недостаточность развивается как при наличии, и при частичном голодании, а также при приеме однообразного белкового питания, когда в диете преобладают белки растительного происхождения. Результатом этого является развитие гипоальбуминемии, нарушение осмотического давления (вследствие дефицита альбуминов, которые связывают воду). Осмотическое давление при этом падает, и жидкость уходит в ткани, вызывая отеки. Такой формой пищевой дистрофии при белковой патологии является квашиоркор. Заболевание распространенно в развивающихся странах. Причина квашиоркора - дефицит белков в пище. Новорожденный ребенок до 3-х летнего возраста вскармливается только молоком матери, потом потребляет низкобелковую диету (вода, рис, фрукты). В результате уровень поступающего в организм белка снижен, снижается соответственно уровень и активность протеаз, вследствии этого белок плохо усваивается. Белки необходимы организму как главные пластические элементы, поэтому при квашиоркоре наблюдается остановка роста, атония мышц, нарушения репарации и регенерации почки, почка имеет вид красной корочки, как после ожога.
Т.к. белки необходимы для образования транспортных форм липидов (ЛП), то их дефицит приводит к дефициту синтеза ЛП и нейтральный жир (ТГ) накапливается в ткани, вызывая жировую дегенерацию.
Белок необходим для синтеза гемоглобина, и дефицит белка проявляется в виде анемии.
Белки необходимы для иммунологической защиты, их дефицит приводит к развитию вторичного иммунодефицита.
Одним из более ранних нарушений азотистого обмена при белковой недостаточности является резкое снижение интенсивности дезаминирования, трансаминирования и биосинтеза аминокислот, а также биосинтеза мочевины. Эти нарушения обусловлены недостаточным синтезом белковой части ферментов, катализирующих эти реакции. Исключение составляет аргиназа, активность которой не нарушается. Следствием этих нарушений является увеличение концентрации а/к в крови (до 10-25%, в норме 1-2%) и уменьшении концентрации мочевины.
При белковой недостаточности отмечены также специфические изменения обмена отдельных а/к. В частности нарушения обмена ТРП (триптофана) сопровождается накоплением ксантуреновой кислоты, которая оказывает токсическое действие на бета-клетки островков Лангерганса pancreas, являясь тем самым одним из этиологических факторов диабета.
Биосинтез дефектных белков.
Измененный синтез белков может быть результатом
нарушений в работе белоксинтезирующей системы – аппарата трансляции или посттрансляционной модификации молекул. С увеличением частоты ошибок трансляции в процессе жизни связывают старение организма.
дефекта регуляции; на клеточном уровне – это воздействие метаболитов, на уровне организма – гормоны и нервная система.
Первично - и вторично-дефектные белки.
Все патологические белки делятся на 2 группы.
Первично – патологические синтезированы за счет дефектного генома:
фенилкетонурия;
болезнь Леха-Нихана;
серповидно-клеточная анемия (нарушение синтеза Hb)
болезнь Вильсона-Коновалова (проявляется в 10-12 лет; причина - отсутствие церулоплазмина-Cu-переносящего белка; Cu накапливается в печени, роговице, почках, узлах нервной системы, вызывая дегенерацию).
Вторично – патологические: возникают благодаря постороннему воздействию:
введение антибиотиков на этапе трансляции белка;
нарушение процессинга коллагена при гиповитаминозе С;
извращение процессинга при воздействии токсических веществ (например, возникновение гликозилированного Hb при сахарном диабете обусловлено тем, что альдегидная группа глюкозы взаимодействует с аминогруппой глобина).
Кроме дефектов белков - ферментов могут возникать дефекты белков неферментной природы: индивидуальных белков плазмы ( альбуминов, ЛП), белков системы свертывания крови, Hb, Ig, белков комплемента, калликреин-кининовой системы.
4. ПРАКТИЧЕСКАЯ ЧАСТЬ ЗАНЯТИЯ
Лабораторная работа:
№1. Определение общего белка сыворотки крови рефрактометрическим методом.
Грицук А.И. Практическая биохимия: Учебное пособие. ч.1. – Гомель, 2002. – С. 88–93.
5. ХОД ЗАНЯТИЯ.
5.1 Проведение устного теоретического опроса.
5.2 Проведение письменного контроля по теоретическим знаниям.
5.3 Выполнение лабораторной работы.
5.4 Выводы по лабораторной работе. Подведение итогов.
Лабораторная работа №1: Определение общего белка сыворотки крови рефрактометрическим методом.
ПРИНЦИП МЕТОДА: В основе рефрактометрии лежит различная преломляющая способность жидких сред, количественно выражаемая коэффициентом преломления (отношение синуса угла падения () к синусу угла преломления ():
Sin
n = ,
Sin
который в сыворотке крови обусловлен в основном количеством, качеством растворенного белка и температурой. Влияние других компонентам сыворотки крови на коэффициент преломления значительно меньше. Определение коэффициента преломления проводят с помощью рефрактометров.
Содержание белка (%) в плазме (сыворотке) крови
Коэффициент преломления |
Содержание белка (%) |
Коэффициент преломления |
Содержание белка (%) |
1,33705 |
0,63 |
1,34575 |
3,68 |
1,33743 |
0,86 |
1,34612 |
5,90 |
1,33781 |
1,08 |
1,34650 |
6,12 |
1,33820 |
1,30 |
1,34687 |
6,34 |
1,33858 |
1,52 |
1,34724 |
6,55 |
1,33896 |
1,74 |
1,34761 |
6,77 |
1,33934 |
1,96 |
1,34798 |
6,98 |
1,33972 |
2,18 |
1,34836 |
7,20 |
1,34000 |
2,40 |
1,34873 |
7,42 |
1,34048 |
2,62 |
1,34910 |
7,63 |
1,34086 |
2,84 |
1,34947 |
7,85 |
1,34124 |
3,06 |
1,34984 |
8,06 |
1,34162 |
3,28 |
1,35021 |
8,28 |
1,34199 |
3,50 |
1,35058 |
8,49 |
1,34237 |
3,72 |
1,35095 |
8,71 |
1,34275 |
3,94 |
1,35132 |
8,92 |
1,34313 |
4,16 |
1,35169 |
9,14 |
1,34350 |
4,38 |
1,35205 |
9,35 |
1,34388 |
4,60 |
1,35242 |
9,57 |
1,3442 |
4,81 |
1,35279 |
9,78 |
1,34463 |
5,03 |
1,35316 |
9,99 |
1,34500 |
5,25 |
1,35352 |
10,20 |
1,34537 |
5,47 |
1,35388 |
10,41 |
РАСЧЕТ: Определив показатель преломления по таблице, вычисляют процент содержания белка в сыворотке крови; для перехода к единицам системы СИ (г/л) результат следует умножить на 10.
НОРМА: содержание общего белка в плазме (сыворотке) крови здорового человека составляет 6.5-8.5 % или 65-85 г/л.
6. ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ ЗНАНИЙ
1 Активация аминокислот происходит с помощью фермента:
а) лигазы; б) фосфатазы; в) РНК-азы; г) пептидазы; д) синтетазы; е) лиазы?
2 Аминокислоты в белках ковалентно связаны:
а) силами Ван-дер-Ваальса; |
г) фосфоэфирными связями; |
б) пептидными связями; |
д) водородными связями; |
в) гидрофобными связями; |
е) координационными связями? |
3 Какие белки узнают терминирующие кодоны мРНК:
а) факторы освобождения; |
в) факторы элонгации; |
б) ферменты рестрикции; |
г) CAP-связанные белки? |
4 Характерной чертой рибосом эукариот является:
а) наличие двух субъединиц – 30 и 50 S; |
г) присутствие ДНК; |
б) наличие двух субъединиц – 40 и 60 S; |
д) наличие фосфолипидов; |
в) высокая АТФазная активность; |
е) наличие гистонов? |
5 Точковая мутация мРНК будет наиболее вероятной причиной:
а) распада мРНК; б) инактивации рибосом; в) изменения первичной структуры белка; г) незавершенной транскрипции; д) подавления сплайсинга?
6 Внутривенное введение радиоактивной меченой аминокислоты взрослому животному приводит:
а) к инкорпорации эквивалентных количеств меченой аминокислоты во все белки организма; б) инкорпорации различных количеств меченой аминокислоты в отдельные белки организма; в) меченая аминокислота не инкорпорируется в белок; г) быстрой и полной экскреции меченой аминокислоты; д) вытеснению и экскреции равного количества немеченной аминокислоты?
7 Белки синтезируются:
а) от N-конца к С-концу; |
г) с матрицы иРНК; |
б) от С-конца к N-концу; |
д) от 3’-конца к 5’-концу РНК; |
в) с матрицы рРНК; |
е) от 5’-конца к 3’-концу РНК? |
8 Основные каталитические функции в рибосоме осуществляют:
а) факторы инициации; б) факторы элонгации; в) факторы терминации; г) р-РНК; д) синтетазы; е) рибосомальные белки?
9 Каждая рибосома в полисоме:
а) движется по мРНК в направлении 3` 5`; б) движется по мРНК в направлении 5` 3`; в) синтезирует многие полипептидные цепи; г) синтезирует только одну полипептидную цепь; д) диссоциирует по окончании синтеза; е) подавляется актиномицином D?
10 Укажите основной фермент, ответственный за реализацию информации генома ретровирусов:
а) ДНК-лигаза; б) ДНК-полимераза; в) обратная транскриптаза (ревертаза); г) РНК-полимеразы; д) АРС-аза?
11 Какая из нуклеиновых кислот в животной клетке отличается большей стабильностью:
а) мРНК; б) рРНК; в) ДНК; г) мяРНК; д) предшественники тРНК; е) гяРНК?
12 Денатурированная ДНК лимфоцитов человека не будет гибридизироваться:
а) с рРНК лимфоцитов; |
в) денатурированной ДНК митохондрий; |
б) тРНК почки; |
г) мРНК мозга? |
13 Дифтерийный токсин подавляет биосинтез белка на этапе и путем:
а) инициации; б) элонгации; в) терминации; г) процессинга иРНК; д) сплайсинга иРНК; е) рибозилирования ФЭ-2; ж) ограниченного протеолиза; з) аденилирования белка; и) метилирования белка; к) фосфорилирования белка?
7. ЛИТЕРАТУРА
Основная
Материал лекций.
Биологическая химия: учебник/ В.К Кухта., Т.С.Морозкина, и др ; под ред. А.Д.Тагановича.- Минск: Асар, М.: Издательство БИНОМ, 2008. С. 387-418
Березов Т. Т., Коровкин Б. Ф. Биологическая химия. М.: Медицина, 1990. С. 354–364; 1998. С. 509–544.
Николаев А. Я. Биологическая химия. М.: Высшая школа, 1989. С. 92–156.
Дополнительная
Марри Р. и др. Биохимия человека. М.: Мир, 1993. Т. 2, С. 94–126, 321–325.
Филиппович Ю. Б. Основы биохимии. М.: Высшая школа, 1993. С. 272–297.
Албертс Б. и др. Молекулярная биология клетки. М.: Мир, 1994. Т. 2. С. 176–253.
Ленинджер А. Основы биохимии. М.: Мир, 1985. Т. 3. С. 926–994.
Троицкий В. Г. Дефектные белки – постсинтетическая модификация. Киев: Наукова думка, 1991. С. 48–226.
Методическая разработка составлена асс. каф. биохимии Громыко М.В.