21.docx
Технологический процесс получения монокристаллического слитка кремния
Производство начинают с нагревания необожженного поликристаллического кремния до 1420 Градусов по Цельсию в специальной герметичной печи, очищенной от воздуха инертным газом – аргоном.
Затем получившийся расплавленный кремний раскручивается в тигле, а затравочный кристалл кремния, размером и формой напоминающий карандаш, охлаждаемый холодильником, погружается в него, вращаясь в противоположном направлении.
Кремний устойчив на воздухе при нагревании его до 900 Градусов по Цельсию, выше этой температуры кремний начинает интенсивно окисляться с образованием диоксида кремния. Расплавленный кремний обладает высокой химической активностью, поэтому подбор для него контейнерного и тигельного материалов вызывает определенные трудности. Наиболее чистые материалы, из которых изготовляют тигли (кварц и графит), при высоких температурах взаимодействуют с кремнием.
Пока расплавленный монокристаллический кремний остывает, затравочный кристалл медленно извлекают, увлекая за собой монокристалл полупроводникового материала. Растет монокристалл на затравке со скоростью до 80 мм/ч. Расплав смачивает затравку и удерживается на ней силами поверхностного натяжения. В результате получается сплошной кремниевый кристалл нужной длины и диаметром (в настоящее время) 300 мм. Отсутствие прямого контакта растущего монокристалла с тиглем и возможность изменения его геометрической формы позволяют получать практически бездислокационные монокристаллы.
Монокристалл после охлаждения калибруют по диаметру до заданного размера (300 мм) с точностью +/- 1 мм. Затем проводится травление его поверхности на глубину 0.3 - 0.5 мм и ориентация по заданному кристаллографическому направлению (для кремния обычно по оси [111] и [100]), чтобы получить после резки пластины, ориентированные строго в заданной плоскости. Правильная ориентация пластин обеспечивает высокую воспроизводимость электрофизических параметров создаваемых на пластине микросхем.
После химического и рентгеноскопического анализа для проверки степени его чистоты и молекулярной ориентации он загружается в установку для резки кремния на пластины (подложки).
Технологический процесс резки монокристаллического слитка на полупроводниковые пластины
Резка алмазным диском. На шпиндель станка крепят алмазный диск и с помощью специальных растягивающих болтов регулируют его радиальное натяжение. Внутрь полого шпинделя помещают держатель с приклеенным к нему полупроводниковым слитком. При включении станка шпиндель с закрепленным на нем алмазным диском начинает вращаться. Если держатель со слитком перемещать в горизонтальном (или вертикальном) направлении, то в определенный момент слиток коснется своей боковой поверхностью кромки алмазного диска и начинается процесс резки. При полном отрезании пластины от слитка держатель отводится в исходное первоначальное положение и выдвигается из шпинделя на длину, равную толщине отрезаемой пластины. После этого процесс повторяется.
Каждое алмазное зерно, закрепленное на кромке металлического диска, представляет собой микрорезец, который скалывает микрочастицы с обрабатываемой поверхности полупроводникового материала. Процесс резания идет при большой частоте вращения шпинделя (3000 - 5000 об/мин). При частотах вращения менее 3000 об/мин производительность процесса резки резко снижается, при частотах более 5000 об/мин возрастают вибрации станка, которые вызывают биение диска, что приводит к снижению чистоты обработки поверхности пластин и резкому увеличению расхода полупроводникового материала. При резке происходит выделение большого количества теплоты в месте соприкосновения алмазной кромки диска с поверхностью полупроводникового материала. Поэтому в течение всего процесса резки в область контакта диск-слиток непрерывно подают охлаждающую жидкость.
Режим резки выбирают, исходя из конкретных условий: вида полупроводникового материала, диаметра, толщины отрезаемой пластины, требований по классу и чистоте обработки, точности геометрических размеров и требований по плоскостности и плоскопараллельности пластины. На процесс резки существенное влияние оказывает скорость подачи слитка (сила прижатия к алмазному диску). При малых скоростях подачи слитка производительность резки слишком мала. С увеличением скорости подачи производительность повышается, а точность обработки снижается за счет прогибания диска. Отрезаемая пластина будет иметь искривленную поверхность. При малой толщине пластины это может привести к ее разлому в процессе резки (более низкая скорость подачи для тонких и более высокая – для толстых пластин). На скорость подачи существенное влияние оказывает твердость обрабатываемого материала.
Шлифовка полупроводниковых пластин
Для получения хороших результатов шлифовку проводят в чистых, свободных от пыли помещениях и под защитными кожухами с избыточным давлением воздуха, все установки для проведения процессов шлифовки разделены по виду обработки и типу используемого абразива, а все материалы (шлифовальники, абразивные порошки) рассортированы и хранятся в отдельных герметичных скафандрах.
Под процессом шлифовки понимают обработку полупроводниковых пластин на твердых доводочных дисках-шлифовальниках абразивными микропорошками. Шлифовальники обычно изготовляют из чугуна, стекла, стали, меди или латуни. Зернистость микропорошков для шлифования пластин выбирают от нескольких микрон до менее 0.1 микрона.
При шлифовке полупроводниковые пластины располагают так, чтобы они соприкасались с поверхностью шлифовальника. При вращении шлифовальника поверхность шлифовальника и пластин плотно прилегают друг к другу. В зону шлифования подают абразивную суспензию, что создает определенное давление, которое приводит к выкалыванию микрочастиц полупроводникового материала. Шлифованная поверхность обрабатываемых пластин имеет матовую фактуру и состоит из большого числа кратерообразных выколок. Размеры этих выколок находятся в прямой зависимости от размера зерен абразива, давления на них шлифовальника и скорости шлифовки.
Шлифовку свободным абразивом выполняют с использованием различных суспензий и паст. В процессе обработки зерна абразива находятся в свободном состоянии, т.е. не связаны жестко друг с другом. Абразивная суспензия создает тонкую прослойку между шлифовальником и обрабатываемой пластиной, в которой абразивные зерна свободно перетекаются. Шлифовка связанным абразивом существенно отличается как по физическому принципу удаления материала в процессе обработки, так и по кинематике процесса. Шлифовку связанным абразивом выполняют на станках с жесткими осями, особенностью которых является неизменность положения осей вращения шлифовальника и обрабатывамых пластин. Конструкция шлифовального круга представляет собой металлический диск с нанесенным на его поверхность алмазным слоем. Алмазные зерна прочно соединены с поверхностью шлифовального диска специальной крепящей связкой.
Шпиндель шлифовального круга, вращаясь с частотой 15000 – 18000 об/мин, приходит в контакт с поверхностью пластин. Алмазные зерна шлифовальника, ударяясь с высокой скоростью о пластины, снимают с поверхности полупроводникового материала микростружку. Обработанная этим способом полупроводниковая пластина имеет специфический рисунок поверхности, который предстваляет собой сетку из множества пересекающихся рисок. Процесс шлифовки свзанным абразивом характеризуется выделением большого количества теплоты. Поэтому для предотвращения перегрева шлифовальника и пластин в зону шлифования подают охлаждающую жидкость. Точность обработки связанным абразивом зависит в первую очередь от настройки станка и жесткости крепления его элементов. Погрешности геометрических размеров и форм обрабатываемых пластин возникают вследствие непараллельности осей шпинделя шлифовального круга и предметной головки станка (где размещают подложки).
Полировка полупроводниковых пластин
Для улучшения качества обработки поверхности полупроводниковых пластин и уменьшения глубины механически нарушенного слоя проводят процесс полировки. Процесс полировки отличается от процесса шлифовки технологическим режимом, размером зерна и видом абразива, а также материалом полировальщика. Обработка происходит с использованием свободного абразива. Процесс полировки проводят на мягких полировальниках, которые представляеют собой жесткие диски, обтянутые мягким материалом. В качестве абразива используют микропорошки синтетического алмаза, оксида алюминия, оксида хрома, диоксида кремния. Полировочный материал должен удерживать частицы абразивного материала в процессе обработки пластин.
Процесс полировки пластин может происходить в несколько этапов. Для начала применяют микропорошки с более крупной зернистостью. На последующих этапах, после проведения операции очищения от следов предыдущей обработки, меняют материал полировальника и используют более мелкие микропорошки. Нагрузка на полупроводниковые пластины несколько увеличивается. Водная суспензия в течение всего процесса полировки тщательно перемешивается. Последний этап полировки имеет большое значение. Он дает возможность удалить фон частиц с поверхности пластин, возникающий на первых этапах полировки и значительно уменьшить глубину механически нарушенного слоя.
Так же могут применяться химико-механические способы полировки, которые отличаются высокой химической активностью по отношению к обрабатываемому полупроводниковому материалу.